设向量a =, b =(其中实数不同时为零),当时,有a⊥b;当时,有a∥b.(Ⅰ)求函数解析式;(Ⅱ)设,且,求.
(Ⅰ)已知:,求的值.(Ⅱ)已知,为锐角,求的值.
在中,点E是AB的中点,点F在BD上,且BF=BD,求证:E、F、C三点共线.
(本小题满分14分) (1)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有:①AB=;②A点处对M、N两点的俯角分别为和;B点处对M、N两点的俯角分别为和;请同学们在示意图中标出这四个俯角并用文字和公式写出计算M,N间的距离的步骤. (2)在△ABC 中,若AB=2,AC=2BC,求△ABC面积的最大值.
(本小题满分13分) 已知⊙O经过三点(1,3)、(-3,-1)、(-1,3),⊙M是以两点(7,),(9,)为直径的圆.过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.(1)求⊙O及⊙M的方程;(2)若直线PA与⊙M的另一交点为Q,当弦PQ最长时,求直线PA的方程;(3)求的最大值与最小值.