如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:. 拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.
求平行于直线,且与它的距离为的直线的方程。
(本小题满分12分)设是定义在R上的函数,且(1)若;(2)若.
(本小题满分12分) 如图,在三棱锥P—ABC中,AB⊥BC,AB =" BC" = kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC.(1) 求证:ED∥平面PAB;(2) 求直线AB与平面PAC所成的角;(3) 当k取何值时,E在平面PBC内的射影恰好为△PBC的重心?
(本小题满分12分) 有2名老师,3名男生,4名女生照相留念,在下列情况中,各有多少种不同站法?(写出过程,最后结果用数字表示)(1) 男生必须站在一起;(2) 女生不能相邻;(3) 若4名女生身高都不等,从左到右女生必须由高到矮的顺序站;(4) 老师不站两端,男生必须站中间.
(本小题满分13分) 已知展开式的前三项系数成等差数列.(1)求n的值;(2)求展开式中二项式系数最大的项;(3)求展开式中系数最大的项.