各项均不相等的等差数列的前四项的和为,且成等比数列.(1)求数列的通项公式与前n项和;(2)记为数列的前n项和,若对任意的正整数n都成立,求实数λ的最小值.
在锐角三角形中,边、是方程的两根,角、满足,求角的度数,边的长度及的面积.
已知方程有两个不相等的负实根;不等式的解集为.若“∨”为真命题,“∧”为假命题,求实数的取值范围.
已知数列的前项和,求证:是等比数列,并求出通项公式.
求不等式的解集.
数列的前n项和为, (I)证明:数列是等比数列; (Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.