一种十字绣作品由相同的小正方形构成,图①,②,③,④分别是制作该作品前四步时对应的图案,按照如此规律,第步完成时对应图案中所包含小正方形的个数记为.① ② ③ ④(1)求出,,,的值;(2)利用归纳推理,归纳出与的关系式;(3)猜想的表达式,并写出推导过程.
为了了解高一女生的身高情况,某中学对高一某班女生的身高(单位:)进行了一次测量,所得数据整理后列出了频率分布表如下:
(Ⅰ)求出表中、、、所表示的数值; (Ⅱ)画出频率分布直方图; (Ⅲ)估计高一女生身高在[155,165]的概率.
已知,且,求的值.
在件产品中有一等品件,二等品件(一等品和二等品都是正品),其余为次品. (Ⅰ)从中任取件进行检测,件都是一等品的概率是多少? (Ⅱ)从中任取件进行检测,件中至少有一件次品的概率是多少? (Ⅲ)如果对产品逐个进行检测,且已检测到前3次均为正品,则第4次检测的产品仍 为正品的概率是多少?
已知动圆过定点,且与直线相切. (1)求动圆的圆心轨迹的方程; (2) 是否存在直线,使过点,并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.
已知函数定义域为(),设. (Ⅰ)试确定的取值范围,使得函数在上为单调函数; (Ⅱ)求证:; (Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数 (其中为函数的导函数) .