在等差数列{}中,=18,前5项的和(1)求数列{}的通项公式; (2)求数列{}的前项和的最小值,并指出何时取最小.
已知A、B、C是椭圆W:上的三个点,O是坐标原点.(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积.(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(1)求实数b的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
如图,两条相交线段、的四个端点都在椭圆上,其中,直线的方程为,直线的方程为.(1)若,,求的值;(2)探究:是否存在常数,当变化时,恒有?
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A,B,M为抛物线弧AB上的动点.(1)若|AB|=8,求抛物线的方程;(2)求的最大值
设定圆,动圆过点且与圆相切,记动圆圆心的轨迹为.(1)求轨迹的方程;(2)已知,过定点的动直线交轨迹于、两点,的外心为.若直线的斜率为,直线的斜率为,求证:为定值.