如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点. (1)求证:MN∥平面AA1C1C; (2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
设P1,P2, ,Pj为集合P={1,2, ,i}的子集,其中i,j为正整数.记aij为满足P1∩P2∩ ∩Pj=Æ的有序子集组(P1,P2, ,Pj)的个数. (1)求a22的值; (2)求aij的表达式.
口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:(1)n的值;(2)X的概率分布与数学期望.
设f(x)=x2x+13,实数a满足|xa|<1,求证:|f(x)f(a)|<2(|a|+1).
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系xoy的原点为极点,OX为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为 ρsin(θ+)="0," 求与直线l垂直且与曲线C相切的直线m的极坐标方程.
已知矩阵M=,N=.(1)求矩阵MN;(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.