如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ)设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值.
(本小题满分12分) 若某一等差数列的首项为的常数项,其中m是-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值.
(本小题满分12分) 已知盒子中有六张分别标有数字1、2、3、4、5、6的卡片 (Ⅰ)现从盒子中任取两张卡片,将卡片上的数字相加,求所得数字是奇数的概率; (Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张标有数字为偶数的卡片则停止抽取,否则继续进行,求抽取次数的分布列.
(本小题满分10分) 已知的展开式中前三项的系数成等差数列. (Ⅰ)求n的值; (Ⅱ)求展开式中系数最大的项.
(本小题满分12分)
如图,把边长为a的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).
(本小题满分12分) 甲、乙两人进行一场乒乓球比赛,根据以往比赛的胜负情况知道,每一局比赛甲胜的概率0.6,乙胜的概率为0.4,本场比赛采用三局两胜制。 (1)求甲获胜的概率. (2)设ξ为本场比赛的局数,求ξ的概率分布和数学期望.