如图,在四棱锥P-ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD与底面ABCD垂直,E为PA的中点.(1)求证:(2)求证:DE∥平面PBC;
(本小题满分12分)如图,在长方体中,,为的中点,为的中点。(1)证明:;(2)求与平面所成角的正弦值。
(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
在中,内角对边的边长分别是,且满足,。(1)时,若,求的面积.(2)求的面积等于的一个充要条件。
(本小题满分13分) 如图,椭圆C: 的焦点为F1(0,c)、F2(0,一c)(c>0),抛物线的焦点与F1重合,过F2的直线l与抛物线P相切,切点在第一象限,且与椭圆C相交于A、B两点,且 (I)求证:切线l的斜率为定值
(Ⅱ)设抛物线P与直线l切于点E,若△OEF2面积为1,求椭圆C和抛物线P的方程。
(本小题满分13分)已知函数(I)求函数的通项公式;(Ⅱ)设的前n项和Sn。