如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
在直角坐标系中,曲线的参数方程为 (为参数) 是上的动点,点满足,点的轨迹为曲线.(1)求的方程;(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.
如图,直线过圆心,交⊙于,直线交⊙于(不与重合),直线与⊙相切于,交于,且与垂直,垂足为,连结.求证:(1); (2).
设函数(I)讨论的单调性;(II)若有两个极值点和,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.
如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值;
是双曲线 上一点,、分别是双曲线的左、右顶点,直线,的斜率之积为.(1)求双曲线的离心率;(2)过双曲线的右焦点且斜率为1的直线交双曲线于,两点,为坐标原点,为双曲线上一点,满足,求的值.