一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X的数学期望E(X).
已知函数,.(1) 求的值;(2) 若,,求.
已知函数的周期为,图象的一个对称中心为,将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数的图象。(1)求函数与的解析式(2)是否存在,使得按照某种顺序成等差数列?若存在,请确定的个数,若不存在,说明理由;(3)求实数与正整数,使得在内恰有2013个零点
设的内角A、B、C的对边分别为a、b、c,.(1)求B;(2)若,求C.
△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。(1)求B;(2)若b=2,求△ABC面积的最大值。
已知函数 的最小正周期为。 (1)求的值; (2)讨论在区间上的单调性。