以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为.(Ⅰ)若M是曲线C1上的动点,求M到定点N的距离的最小值;(Ⅱ)若曲线C1与曲线C2有有两个不同交点,求正数的取值范围.
已知函数,数列满足,,. (1)数列的通项公式; (2)记,求; (3)设数列的通项公式为,求证:.
已知函数函数有相同极值点. (1)求函数的最大值; (2)求实数的值; (3)若,不等式恒成立,求实数的取值范围.
定义在上的奇函数有最小正周期4,且时,. (1)求在上的解析式; (2)判断在上的单调性,并给予证明; (3)当为何值时,关于方程在上有实数解?
已知向量,,函数的图象与直线的相邻两个交点之间的距离为. (1)求函数在上的单调递增区间; (2)将函数的图象向右平移个单位,得到函数的图象.若在上至少含有个零点,求的最小值.
已知命题:函数在上单调递增;命题:不等式的解集为,若为真,为假,求实数的取值范围.