如图,在四棱锥中,底面,, ,,,点为棱的中点. (Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正切值.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,,,,且满足. (1)求证:平面侧面; (2)求二面角的平面角的余弦值。
某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选。 (1)求所选2人均为女副局长的概率; (2)若选派两个副局长依次到A、B两个局上任,求A局是男副局长的情况下,B局是女副局长的概率。
定义在R上的函数及二次函数满足:且。 (1)求和的解析式; (2); (3)设,讨论方程的解的个数情况.
己知⊙O:x2+y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且. (1)求点N的轨迹C的方程; (2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则是否为定值?若是,求出该值;若不是,说明理由.
甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,比赛停止时一共已打局: (1)列出随机变量的分布列; (2)求的期望值E.