甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的4次预赛成绩记录如下:甲 82 84 79 95 乙 95 75 80 90 (1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?
已知双曲线的焦距为,其一条渐近线的倾斜角为,且,以双曲线的实轴为长轴,虚轴为短轴的椭圆为.(1)求椭圆的方程;(2)设点是椭圆的左顶点,为椭圆上异于点的两动点,若直线的斜率之积为,问直线是否恒过定点?若横过定点,求出该点坐标;若不横过定点,说明理由.
为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取名学生进行问卷调查,根据问卷取得了这名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①,②,③,④,⑤,⑥,⑦,⑧,得到频率分布直方图如下,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人: (1)求的值并补全下列频率分布直方图; (2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的名学生,完成下列列联表:
据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关? 参考公式:
如图,多面体中,两两垂直,且,. (1)若点在线段上,且,求证:; (2)求多面体的体积.
已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为( )
已知函数,则下列说法正确的为( )