甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的4次预赛成绩记录如下:甲 82 84 79 95 乙 95 75 80 90 (1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?
如图,在正方体中,分别是中点. 求证:(1)∥平面; (2)平面.
【原创】(本小题满分14分)设是单位圆上三点,为锐角. (1)若求 (2)若求三角形面积的最大值.
设集合,是的两个非空子集,且满足集合中的最大数小于集合中的最小数,记满足条件的集合对的个数为. (1)求的值; (2)求的表达式.
(本小题满分10分)某校开设8门校本课程,其中4门课程为人文科学,4门为自然科学,学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等. (1)求某同学至少选修1门自然科学课程的概率; (2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是,自然科学课程的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程通过的门数,求随机变量的概率分布列和数学期望。
选修4—5:不等式选讲 已知,证明:.