某校兴趣小组进行了一项“娱乐与年龄关系”的调查,对 15~65岁的人群随机抽取1000人的样本,进行了一次“是否是电影明星追星族”调查,得到如下各年龄段样本人数频率分布直方图和“追星族”统计表:(1)求的值.(2)设从45岁到65岁的人群中,随机抽取2人,用样本数据估计总体,表示其中“追星族”的人数,求分布列、期望和方差.
(本小题满分12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)设函数,存在使得成立,求实数的取值范围.
(本小题满分12分)已知椭圆+=1(>>)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点的直线:,与该椭圆交于、两点,直线、的斜率依次为、,满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.(Ⅰ)求证:平面平面BCD;(Ⅱ)求二面角的平面角的大小.
某大学志愿者协会中,数学学院志愿者有8人,其中含5名男生,3名女生;外语学院志愿者有4人,其中含1名男生,3名女生.现采用分层抽样的方法(层内采用简单随机抽样)从两个学院中共抽取3名同学,到希望小学进行支教活动.(1)求从数学学院抽取的同学中至少有1名女同学的概率;(2)记为抽取的名同学中男同学的人数,求随机变量的分布列和数学期望.
在中,是中点,已知.(1)判断的形状;(2)若的三边长是连续三个正整数,求的余弦值.