某校兴趣小组进行了一项“娱乐与年龄关系”的调查,对 15~65岁的人群随机抽取1000人的样本,进行了一次“是否是电影明星追星族”调查,得到如下各年龄段样本人数频率分布直方图和“追星族”统计表:(1)求的值.(2)设从45岁到65岁的人群中,随机抽取2人,用样本数据估计总体,表示其中“追星族”的人数,求分布列、期望和方差.
为适应新课改,切实减轻学生负担,提高学生综合素质,某市某学校高三年级文科生300人在数学选修4-4、4-5、4-7选课方面进行改革,由学生自由选择2门(不可多选或少选),选课情况如下表:
(1)为了解学生情况,现采用分层抽样方法抽取了三科作业共50本,统计发现4-5有18本,试根据这一数据求出,的值. (2)为方便开课,学校要求≥110,>110,计算>的概率.
设函数,且以为最小正周期. (1)求的值; (2)已知,求的值.
已知都是正数,且成等比数列,求证:
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于A,B两点 (I)把曲线C1,C2的极坐标方程转化为直角坐标方程; (II)求弦AB的长度.
圆O是的外接圆,过点C的圆的切线与AB的延长线交于点D,, AB=BC=3,求BD以及AC的长.