已知三棱锥P—ABC中,PA=PB,CB⊥平面PAB,PM=MC,AN=3NB。(1)求证明:MN⊥AB;(2)当∠APB=90°,BC=2,AB=4时,求MN的长。
(本小题8分)已知圆C: 及直 (1)证明:不论m取何值,直线l与圆C恒相交; (2)求直线l被圆C截得的弦长最短时的直线方程.
(本小题8分)已知线段AB的两个端点A、B分别在x轴和y轴上滑动,且∣AB∣=2. (1)求线段AB的中点P的轨迹C的方程; (2)求过点M(1,2)且和轨迹C相切的直线方程.
(本小题8分) 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD, 若F,E分别为PC,BD的中点, 求证: (l)EF∥平面PAD; (2)平面PDC⊥平面PAD
设函数. (1)若函数是定义域上的单调函数,求实数的取值范围; (2)求函数的极值点.
已知函数. (1)若,求曲线在点处的切线方程; (2)若函数在区间上单调递增,求实数的取值范围.