已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线:与椭圆相交于,两点(都不是顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
如图,在四棱锥中,平面,底面是菱形,.(1)求证:平面(2)若求与所成角的余弦值;
如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.
如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面PAD是否平行?试证明你的结论。
如图,在正方体中,是的中点,求证:平面
如图,在四面体中,点分别是棱的中点。求证:平面;