设函数分别在、处取得极小值、极大值.平面上点、的坐标分别为、,该平面上动点满足,点是点关于直线的对称点.(Ⅰ)求点、的坐标;(Ⅱ)求动点的轨迹方程.
计算(1)(2)
已知函数R).(1)若曲线在点处的切线与直线平行,求的值;(2)在(1)条件下,求函数的单调区间和极值;(3)当,且时,证明:
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围
已知某工厂生产件产品的成本为(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
关于某设备的使用年限和所支出的维修费用(万元),有如下的统计资料:
(1)如由资料可知对呈线形相关关系.试求:线形回归方程;(,)(2)估计使用年限为10年时,维修费用是多少?