如图,已知⊙与⊙相交于、两点,过点A作⊙的切线交⊙O2于点,过点作两圆的割线,分别交⊙、⊙于点、,与相交于点.[来源(1)求证:;(2)若是⊙的切线,且,,求的长.
(本小题满分12分)平面直角坐标系中,椭圆C:()的离心率为,焦点为、,直线:经过焦点,并与C相交于A、B两点. (1)求C的方程; (2)在C上是否存在C、D两点,满足∥,,若存在,求直线的方程;若不存在,说明理由.
(本小题满分12分)如图,直四棱柱的底面是菱形,侧面是正方形,,是棱的延长线上一点,经过点、、的平面交棱于点,. (1)求证:平面平面; (2)求二面角的余弦值.
(本小题满分12分)己知函数在处取最小值. (1)求的值; (2)在△ABC中,a、b、c分别是A、B、C的对边,已知,,,求角C.
(本小题满分12分).已知函数在点处的切线方程为. (1)求的值; (2)设(为自然对数的底数),求函数在区间上的最大值; (3)证明:当时,.
(本小题满分12分)设正项数列的前项和为,且满足对(). (1)求,,的值; (2)根据(1),猜想数列的通项公式,并证明你的结论; (3)求证:当时,.