已知中心在原点的双曲线的渐近线方程是,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点作倾斜角为的直线交双曲线于,求.
如图,在四棱锥中,底面为菱形,,为的中点,. (Ⅰ)点在线段上,,试确定的值,使得平面; (Ⅱ)在(Ⅰ)的条件下,若平面面,求二面角的大小.
已知数列是等差数列,是等比数列,且,,. (Ⅰ)求数列和的通项公式 (Ⅱ)数列满足,求数列的前项和.
设角是的三个内角,已知向量,,且. (Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围
(本小题满分10分)(选修4-5不等式选讲) 设函数. 求证:(1)当时,不等式成立. (2)关于的不等式在R上恒成立,求实数的最大值.
(本小题满分10分)(选修4-4极坐标与参数方程选讲) 在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为,=. (1)求C1与C2交点的极坐标; (2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.