定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
(本小题满分10分)选修4-5:不等式选讲 已知函数 (1) 解关于的不等式; (2) 若函数的图象恒在函数图象的上方,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知直线的参数方程是,圆C的极坐标方程为. (1)求圆心C的直角坐标; (2)由直线上的点向圆C引切线,求切线长的最小值.
(本小题满分10分)选修4-1:几何证明选讲 如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,AE=AC ,交于点,且, (Ⅰ)求的长度. (Ⅱ)若圆F与圆内切,直线PT与圆F切于点T,求线段PT的长度
(本小题满分12分)已知函数 (1)求的单调区间和极值; (2)若对于任意的,都存在,使得,求的取值范围
已知椭圆上的点到两焦点的距离和为,短轴长为,直线与椭圆交于两点. (Ⅰ)求椭圆C方程; (Ⅱ)若直线与圆相切,证明: 为定值; (Ⅲ)在(Ⅱ)的条件下,求的取值范围.