已知函数(1)当=-2时,求的最值;(2)求实数的取值范围,使在区间上是单调函数.
(本小题满分14分)将3个完全相同的小球随机地放入编号依次为1,2,3,4,5的盒子里,用随机变量表示有球盒子编号的最大值.(Ⅰ)求;(Ⅱ)求的分布列和数学期望.
已知过点(,0)()的动直线交抛物线于、两点,点与点关于轴对称.(I)当时,求证:;(II)对于给定的正数,是否存在直线:,使得被以为直径的圆所截得的弦长为定值?如果存在,求出的方程;如果不存在,试说明理由.
函数在处取得极小值–2.(I)求的单调区间;(II)若对任意的,函数的图像与函数的图像至多有一个交点.求实数的范围.
已知点(1,2)是函数的图象上一点,数列的前项和为.(I)求数列的通项公式;(II)若,求数列的前项和.
在中,角所对的边分别为,,,且.(I)求;(II)若,且,求.