如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与 的延长线相交于点,延长交⊙于 点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由.(3)在(2)的条件下,若,,求的值.
(本小题满分16分)在距A城市45千米的B地发现金属矿,过A有一直线铁路AD.欲运物资于A,B之间,拟在铁路线AD间的某一点C处筑一公路到B.现测得千米,(如图).已知公路运费是铁路运费的2倍,设铁路运费为每千米1个单位,总运费为.为了求总运费的最小值,现提供两种方案:方案一:设千米;方案二设.(1)试将分别表示为、的函数关系式、;(2)请选择一种方案,求出总运费的最小值,并指出C点的位置.
(本小题满分14分)如图,椭圆和圆,已知椭圆过点,焦距为2.(1)求椭圆的方程;(2)椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点.设的斜率为,直线斜率为,求的值.
(本小题满分14分)如图,在三棱柱中,为棱的中点,,.求证:(1)平面;(2)∥平面.
(本小题满分14分)设平面向量=,,,.(1)若,求的值;(2)若,求函数的最大值,并求出相应的值.
(本小题满分13分)设知函数(是自然对数的底数).(1)若函数在定义域上不单调,求的取值范围;(2)设函数的两个极值点为和,记过点,的直线的斜率为,是否存在,使得?若存在,求出的取值集合;若不存在,请说明理由.