如图,已知⊙与⊙外切于点,是两圆的外公切线,,为切点,与 的延长线相交于点,延长交⊙于 点,点在延长线上.(1)求证:是直角三角形;(2)若,试判断与能否一定垂直?并说明理由.(3)在(2)的条件下,若,,求的值.
已知函数y=xlnx+1.(1)求这个函数的导数;(2)求这个函数的图象在点x=1处的切线方程.
设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q的必要不充分条件,求a的取值范围.
如图,在正四面体中,分别是棱的中点.(1)求证:四边形是平行四边形;(2)求证:平面;(3)求证:平面.
已知函数(其中,无理数).当时,函数有极大值.(1)求实数的值;(2)求函数的单调区间;(3)任取,,证明:.
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M. (1)求椭圆C的方程;(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.