某大学外语系有5名大学生参加南京青奥会翻译志愿者服务,每名大学生都随机分配到奥体中心体操和游泳两个比赛项目(每名大学生只参加一个项目的服务)。(1)求5名大学生中恰有2名被分配到体操项目的概率;(2)设X,Y分别表示5名大学生分配到体操、游泳项目的人数,记ξ=|X-Y|,求随机变量ξ的分布列和数学期望E(ξ).
在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为,M,N分别为C与x轴,y轴的交点. (Ⅰ)写出C的直角坐标方程,并求M,N的极坐标; (Ⅱ)设MN的中点为P,求直线OP的极坐标方程.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证: (Ⅰ); (Ⅱ).
已知函数: (1)讨论函数的单调性; (2)若对于任意的,若函数在 区间上有最值,求实数的取值范围.
已知是正数组成的数列,,且点在函数的图象上. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,,求证:.
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式; (Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?