甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x之间的函数图象如图所示,根据图象所提供的信息解答问题:(1)他们在进行 米的长跑训练,在0<x<15的时段内,速度较快的人是 ;(2)求甲距终点的路程y(米)和跑步时间x之间的函数关系式;(3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.
某中学为了创设"书香校园",准备购买 A , B 两种书架,用于放置图书.在购买时发现, A 种书架的单价比 B 种书架的单价多20元,用600元购买 A 种书架的个数与用480元购买 B 种书架的个数相同.
(1)求 A , B 两种书架的单价各是多少元?
(2)学校准备购买 A , B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个 A 种书架?
某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次被调查的学生有 人;
(2)请补全条形统计图,并求出扇形统计图中"航模"所对应的圆心角的度数;
(3)通过了解,喜爱"航模"的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.
先化简,再求值: ( x - 1 - x 2 x + 1 ) ÷ x x 2 + 2 x + 1 ,其中 x = 3 .
在平面直角坐标系中,抛物线 y = a x 2 + bx - 3 过点 A ( - 3 , 0 ) , B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为点 D .
(1)求抛物线的解析式;
(2)点 P 为直线 CD 上的一个动点,连接 BC ;
①如图1,是否存在点 P ,使 ∠ PBC = ∠ BCO ?若存在,求出所有满足条件的点 P 的坐标;若不存在,请说明理由;
②如图2,点 P 在 x 轴上方,连接 PA 交抛物线于点 N , ∠ PAB = ∠ BCO ,点 M 在第三象限抛物线上,连接 MN ,当 ∠ ANM = 45 ° 时,请直接写出点 M 的坐标.
如图,在矩形 ABCD 中, AD = kAB ( k > 0 ) ,点 E 是线段 CB 延长线上的一个动点,连接 AE ,过点 A 作 AF ⊥ AE 交射线 DC 于点 F .
(1)如图1,若 k = 1 ,则 AF 与 AE 之间的数量关系是 ;
(2)如图2,若 k ≠ 1 ,试判断 AF 与 AE 之间的数量关系,写出结论并证明;(用含 k 的式子表示)
(3)若 AD = 2 AB = 4 ,连接 BD 交 AF 于点 G ,连接 EG ,当 CF = 1 时,求 EG 的长.