甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
(本小题满分14分)若正项数列的前项和为,首项,点()在曲线上.源: (1)求数列的通项公式; (2)设,表示数列的前项和,求证:.
(本小题满分14分) 如图所示,在所有棱长都为的三棱柱中,侧棱,点为棱的中点. (1)求证:∥平面; (2)求四棱锥的体积.
(本小题满分12分)某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组,下图是按上述分组方法得到的频率分布直方图. (1)根据频率分布直方图,估计这名学生百米测试成绩的平均值; (2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率.
(本小题满分12分)已知函数的最小正周期为,且. (1)求的表达式; (2)设,,,求的值.
(本小题满分14分)已知,函数=. (1)记在区间上的最大值为,求的表达式; (2)是否存在,使函数在区间内的图象上存在两点,在该两点处的切线互相垂直?若存在,求的取值范围;若不存在,请说明理由.