先化简,再求值:,其中。
已知y+4与x-3成正比例,且x=5时y=4. (1)求y与x之间的函数关系式; (2)当y=4时,求x的值.
(本题12分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm, QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).
(本题12分))如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm. (1)直线AC与⊙O有怎样的位置关系?为什么? (2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
(本题10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1 名男生1名女生共5人中选出2名主持人. (1)用树形图或列表法列出所有可能情形; (2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.
(本题10分)已知关于x的一元二次方程,其中a、b、c分别为 △ABC三边的长. (1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根.