甲乙两人各有个材质、大小、形状完全相同的小球,甲的小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.(1)写出基本事件空间;(2)你认为“规定”对甲、乙二人公平吗?说出你的理由.
(本题满分16分)设函数 R 的最小值为-a,两个实根为、 .(1)求的值;(2)若关于的不等式解集为,函数在上不存在最小值,求的取值范围;(3)若,求b的取值范围。
(本题满分16分)已知函数.(1)判断并证明的奇偶性;(2)求证:;(3)已知a,b∈(-1,1),且,,求,的值.
(本题满分16分)函数().(1)求函数的值域;(2)判断并证明函数的单调性;(3)判断并证明函数的奇偶性;(4)解不等式.
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.若每日来回的次数是车头每次拖挂车厢节数的一次函数,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.
计算: ⑴; (2).