已知=(,),=(,),(ω>0),且的最小正周期是.(Ⅰ)求的值;(Ⅱ)若=(),求值;(Ⅲ)若函数与的图象关于直线对称,且方程在区间上有解,求的取值范围.
(本小题共12分) 设函数的最大值为,最小正周期为. (Ⅰ)求、; (Ⅱ)若有10个互不相等的正数满足 求的值.
不等式选讲 已知均为正实数,且.求的最大值.
坐标系与参数方程 已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.
几何证明选讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证:(1); (2)AB2=BE•BD-AE•AC.
(本小题满分12分) 已知函数(),其中. (1)当时,讨论函数的单调性; (2)若函数仅在处有极值,求的取值范围; (3)若对于任意的,不等式在上恒成立,求的取值范围.