求椭圆+y2=1的长轴和短轴的长、离心率、焦点和顶点的坐标.
.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;(2)至少有3次射击成绩为10环的概率;(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)
.(本小题满分12分)已知平面上三点,,.(1)若(O为坐标原点),求向量与夹角的大小;(2)若,求的值.
(本小题满分14分)已知定义域为的函数同时满足以下三个条件:① 对任意的,总有≥0; ②;③若且,则有成立,并且称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,且 ,求证:
(本小题满分14分)如图,直线与椭圆交于两点,记的面积为.(I)求在,的条件下,的最大值;(II)当,时,求直线的方程.
(本小题满分14分)某商店经销一种广州亚运会纪念品,每件产品成本为元,且每卖出一件产品,需向税务部门上交元(为常数,)的税收,设每件产品的日售价为元(),根据市场调查,日销售量与(为自然对数的底数)成反比,已知每件产品的日售价为元,日销售量为件。w.w.w..c.o.m (1)求商店的日利润元与每件产品的日售价元的函数关系式;(2)当每件产品的日售价为多少时该商店的日利润最大,说明理由.