厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格品的概率;(2)若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及数学期望E(ξ),并求该商家拒收这批产品的概率.
已知,点依次满足。 (1)求点的轨迹; (2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程; (3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设(). (1)试将表示为的函数; (2)若,且时,取得最小值,试求的值.
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF. (1)求证:BF∥平面ACE; (2)求证:BF⊥BD.
在中,角所对的边分别为。已知,. (1)若,求的面积; (2)求的值.
如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。 (1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由; (2)已知具有“性质”,且当时,求在上有最大值; (3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.