设 .(1)若是函数的极大值点,求的取值范围;(2)当时,若在上至少存在一点,使成立,求的取值范围.
(本小题满分12分) 已知 R.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值,并指出此时x的值.
(本小题满分14分)已知(为常数,且),设是首项为4,公差为2的等差数列. (1)求证:数列{}是等比数列;(2)若,记数列的前n项和为,当时,求;(3)若,问是否存在实数,使得中每一项恒小于它后面的项?若存在,求出实数的取值范围.
(本小题满分14分)在直角坐标系中,以为圆心的圆与直线相切.(1)求圆的方程;(2)已知、,圆内动点满足,求的取值范围.
(本小题满分14分)已知函数(1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;(2)若函数上为单调增函数,试求满足条件的最大整数a.
(本小题满分14分)如图,在四棱锥中,底面是边长为的正方形,、分别为、的中点,侧面,且.(1)求证:∥平面;(2)求三棱锥的体积.