数列中,,其前n项和满足,(1)计算;(2)猜想的表达式并用数学归纳法证明。
已知函数.(1)当时,求的极值;(2)若对恒成立,求实数的取值范围.
如图,已知长方形中,, ,为的中点.将沿折起,使得平面平面.(1)求证:; (2)若点是线段的中点,求二面角的余弦值.
在锐角中,分别为角所对的边,且(1)试求角的大小; (2)若,且的面积为,求的值.
已知各项均为正数的数列的前项和为,且对任意的,都有。(1)求数列的通项公式;(2)若数列满足,且cn=anbn,求数列的前 项和;(3)在(2)的条件下,是否存在整数,使得对任意的正整数,都有,若存在,求出的值;若不存在,试说明理由.
已知二次函数,不等式的解集为.(1)求的解析式; (2)若函数在上单调,求实数的取值范围;(3)若对于任意的x∈[-2,2],都成立,求实数n的最大值.