如图所示,、分别为椭圆:的左、右两个焦点,、为两个顶点,已知顶点到、两点的距离之和为.(1)求椭圆的方程;(2)求椭圆上任意一点到右焦点的距离的最小值;(3)作的平行线交椭圆于、两点,求弦长的最大值,并求取最大值时的面积.
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。
已知圆,直线,点在直线上,过点作圆的切线、,切点为、. (Ⅰ)若,求点坐标; (Ⅱ)若点的坐标为,过作直线与圆交于、两点,当时,求直线的方程; (III)求证:经过、、三点的圆与圆的公共弦必过定点,并求出定点的坐标.
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (Ⅰ)求证:AC⊥SD; (Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由.
已知圆和定点,由圆外一点向圆引切线,切点为,且满足, (Ⅰ)求实数间满足的等量关系; (Ⅱ)求线段长的最小值.
如图,在棱长为1的正方体中. (Ⅰ)求异面直线与所成的角; (Ⅱ)求证平面⊥平面.