第11届全国人大五次会议于2012年3月5日至3月14日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语。(I)根据以上数据完成以下2X2列联表:并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?(II)会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随机抽取2人做同声翻译,则抽出的2人都在俄罗斯工作过的概率是多少?
(本小题满分12分)已知数列为等差数列,其中. (1)求数列的通项公式; (2)若数列满足,为数列的前项和,当不等式()恒成立时,求实数的取值范围.
(本小题满分12分)如图,已知四边形ABCD为正方形,平面,∥,且 (1)求证:平面; (2)求二面角的余弦值.
(本小题满分12分) 由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示. 节排器等级如表格所示
若把频率分布直方图中的频率视为概率,则 (1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率; (2)如果从乙型号的节排器中随机抽取3件,求其二级品数的分布列及数学期望.
(本小题满分12分)已知函数,其中A、B、C是的三个内角,且满足,. (1)求的值; (2)若,且,求的值.
(本小题满分18分)已知数列,. (1)求证:数列为等比数列; (2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由; (3)设,其中为常数,且,,求.