如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示. (1)证明:AD⊥平面PBC; (2)求三棱锥D-ABC的体积; (3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
设直线与直线交于点. (1)当直线过点,且与直线垂直时,求直线的方程; (2)当直线过点,且坐标原点到直线的距离为时,求直线的方程.
如果实数满足求: (1)的最值; (2)的最大值.
已知全集,集合,集合; (1)求集合、; (2)求.
已知函数,在时取得极值. (Ⅰ)求函数的解析式; (Ⅱ)若时,恒成立,求实数m的取值范围; (Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.