已知椭圆:的离心率,是椭圆上两点,是线段的中点,线段的垂直平分线与椭圆相交于两点.(1)求直线的方程;(2)是否存在这样的椭圆,使得以为直径的圆过原点?若存在,求出该椭圆方程;若不存在,请说明理由.
已知公差不为零的等差数列,等比数列,满足,,. (1)求数列、的通项公式; (2)若,求数列{}的前n项和.
已知函数,m∈R,且的解集为. (1)求的值; (2)若+,且,求的最小值.
在平面直角坐标系中,已知直线的参数方程是(为参数);以为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为. (1)写出直线的普通方程与圆的直角坐标方程; (2)由直线上的点向圆引切线,求切线长的最小值.
如图,已知点在圆直径的延长线上,切圆于点,是的平分线交于点,交于点. (1)求的度数;(2)若,求.
已知. (1)求函数在上的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.