如图所示,在正方体中,E、F分别为DD1、DB的中点.(I)求证:EF//平面ABC1D1;(II)求证:..
(本小题满分14分)已知函数.(1)若对都成立,求的取值范围;(2)已知为自然对数的底数,证明:N,.
(本小题满分14分)已知椭圆的中心在坐标原点,两焦点分别为双曲线的顶点,直线与椭圆交于,两点,且点的坐标为,点是椭圆上异于点,的任意一点,点满足,,且,,三点不共线.(1)求椭圆的方程;(2)求点的轨迹方程;(3)求面积的最大值及此时点的坐标.
(本小题满分14分)已知数列的各项均为正数,其前项和为,且满足,N.(1)求的值;(2)求数列的通项公式;(3)是否存在正整数, 使, , 成等比数列? 若存在, 求的值; 若不存在, 请说明理由.
(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥,且.(1)求证:平面;(2)求二面角的正切值.
(本小题满分12分)袋子中装有大小相同的白球和红球共个,从袋子中任取个球都是白球的概率为,每个球被取到的机会均等.现从袋子中每次取个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为.(1)求袋子中白球的个数;(2)求的分布列和数学期望.