在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。(1)若,,求△ABC的面积;(2)若成等比数列,试判断△ABC的形状。
已知函数,它的一个极值点是. (Ⅰ) 求的值及的值域; (Ⅱ)设函数,试求函数的零点的个数.
已知椭圆的离心率为,且经过点. (Ⅰ)求椭圆的方程; (Ⅱ)如果过点的直线与椭圆交于两点(点与点不重合), ①求的值; ②当为等腰直角三角形时,求直线的方程.
已知直角梯形中,是边长为2的等边三角形,.沿将折起,使至处,且;然后再将沿折起,使至处,且面面,和在面的同侧. (Ⅰ) 求证:平面; (Ⅱ) 求平面与平面所构成的锐二面角的余弦值.
一个口袋中装有2个白球和个红球(且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖. (Ⅰ) 摸球一次,若中奖概率为,求的值; (Ⅱ) 若,摸球三次,记中奖的次数为,试写出的分布列并求其期望.
已知向量,,函数. (Ⅰ)若方程在上有解,求的取值范围; (Ⅱ)在中,分别是A,B,C所对的边,当(Ⅰ)中的取最大值且时,求的最小值.