如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).(1)求过O、B、A三点的抛物线的解析式.(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.
已知关于的一元二次方程.(1)求证:无论取什么实数值,这个方程总有两个不相等的实数根.(2)若这个方程的两个实数根、满足,求的值.
如图.ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的点A、B.(1)求抛物线的解析式;(2)写出x为何值时,函数值小于0.
如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.
直线经过点A(1,3),与y轴交于点B,与x轴交于点C.(1)求直线AB的解析式;(2)将直线AB绕点O顺时针旋转900,与x轴交于点D,与y轴交于点E,与直线AB交于点F,求△BDF的面积;(3)过B点作x轴的平行线BG,点M在直线BG上,且到点(1,1)的距离为6,设点N在直线BG上,请你直接写出使得∠AMB+∠ANB = 450的点N的坐标.
某农户计划利用现有的一面墙(现在的墙足够长),建造如图所示的长方体水池,培育不同品种的鱼苗,他已备足可以修高为1.5 m,长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm(不考虑墙的厚度).(1)若想水池的总容积为36 m3,x应等于多少?(2)若想使水池的总容积V最大,x应为多少?最大容积是多少?