某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为 ;(2)如果随机抽取2名同学共同展示,求同为男生的概率.
解方程组与不等式: (1) (2)解不等式:
先化简,再求值:(2x+y)2-(2x+y)(2x-y),其中x=2,y=-1.
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E, (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
在平面直角坐标系中,矩形ABCD的边AB在x轴上,点A、B的横坐标分别为a+2与2a﹣5,且关于y轴对称,BC的长为3,且点C在第三象限. (1)求顶点A、C的坐标; (2)若y=kx+b是经过点B,且与AC平行的一条直线,试确定它的解析式.
如图,在△ABC中; (1)作∠C的角平分线CE交AB于E(保留痕迹,不写作法),过点E分别作AC、BC的垂线EM、EN,垂足分别为M、N; (2)若EN=2,AC=4,求△ACE的面积.