如图, 已知为直线上一点,过点向直线上方引三条射线、、, 且平分,,,求的度数.
已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C,D,PE是⊙O的切线,E为切点,连结AE,交CD于点F. (1)若⊙O的半径为8,求CD的长; (2)证明:PE=PF; (3)若PF=13,sinA=,求EF的长.
在义乌市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图. 请你结合图中信息,解答下列问题: (1)本次共调查了 名学生; (2)被调查的学生中,最喜爱丁类图书的学生有 人,最喜爱甲类图书的人数占本次被调查人数的 %; (3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍.若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.
如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸片拼成如图2的等腰梯形. (1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的代数式表示S1和S2; (2)请写出上述过程所揭示的乘法公式.
解方程:
如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=. (1)求抛物线的解析式; (2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值; (3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.