解下列方程(1) (2)
(1)解方程:;(2)解不等式组
计算:(1)(2)
如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.
如图,AB是⊙O的弦,D是半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=,求⊙O的半径.
已知抛物线的函数解析式为y=ax2+b x-3a(b<0),若这条抛物线经过点(0,-3),方程ax2+b x-3a=0的两根为x1,x2,且|x1-x2|=4.⑴求抛物线的顶点坐标.⑵已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2.