在平面直角坐标系中,二次函数的图像与轴交于点A,B(点B在点A的左侧),与轴交于点C,过动点H(0, )作平行于轴的直线,直线与二次函数的图像相交于点D,E.(1)写出点A,点B的坐标;(2)若,以DE为直径作⊙Q,当⊙Q与轴相切时,求的值; (3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,请说明理由.
△ABC中,∠C=90°,AC=3,BC=4,在BC边上找一点P,使得点P到点C的距离与点P到边AB的距离相等,求BP的长.
如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF (1)求证:△ADE≌△BFE。 (2)连接EG,判断EG与DF的位置关系并说明理由。
如图,在△ABC中,AB=13,BC=10, BC边上的中线AD=12. (1)AD平分∠BAC吗?请说明理由. (2)求:△ABC的面积.
如图,已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,求:∠AFD的度数?.
如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上. (1)折叠后,DC的对应线段是, (2)若∠1=60°,求∠3的度数; (3)若AB=4,AD=8,求BE的长度.