在平面直角坐标系中,二次函数的图像与轴交于点A,B(点B在点A的左侧),与轴交于点C,过动点H(0, )作平行于轴的直线,直线与二次函数的图像相交于点D,E.(1)写出点A,点B的坐标;(2)若,以DE为直径作⊙Q,当⊙Q与轴相切时,求的值; (3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求的值;若不存在,请说明理由.
如图,DE是△ABC边AB的垂直平分线,分别交AB、BC于D、E.AE平分∠BAC.设∠B=x(单位:度),∠C=y(单位:度). (1)求y随x变化的函数关系式,并写出自变量x的取值范围; (2)请讨论当△ABC为等腰三角形时,∠B为多少度?
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.
已知:如图,在△ABC中,∠C=90°,AC=BC=4,点M是边AC上一动点(与点A、C不重合),点N在边CB的延长线上,且AM=BN,连接MN交边AB于点P. (1)求证:MP=NP; (2)若设AM=x,BP=y,求y与x之间的函数关系式,并写出它的定义域; (3)当△BPN是等腰三角形时,求AM的长.
如图,在△ABC中,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF.求证: (1)△BDE≌△CDF; (2)AB=AC.
在△ABC中,AB=AC,AE是BC边上的高,∠B的平分线与AE相交于点D, 求证:点D在∠ACB的平分线上.