如图,在四棱锥A-BCC1B1中,AB1=4,三角形ABC是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角.(1)D在AC上运动,当D在何处时,有AB1∥平面BDC1?并且说明理由.(2)当AB1∥平面BDC1时,求二面角C-BC1-D的余弦值.
已知中心在坐标原点,焦点在轴上的椭圆经过点M(1,),斜率为的直线经过椭圆的下顶点D和右焦点F,A、B为椭圆上不同于M的两点。(1)求椭圆的标准方程;(2)若直线AB过点F且不与坐标轴垂直,求线段AB的中垂线与轴的交点的横坐标的取值范围。
已知椭圆P的中心O在坐标原点,焦点在轴上,且经过点A(0,),离心率为。(1)求椭圆P的方程;(2)是否存在过点E(0,-4)的直线交椭圆P于两不同点,,且满足,若存在,求直线的方程;若不存在,请说明理由。
的图象在处的切线方程为(1) 求的解析式;(2) 求在上的最值。
求过圆的圆心且与极轴垂直的直线的极坐标方程。
定义在定义域D内的函数,若对任意的都有则称函数为“Storm函数”。已知函数( 1 )若求过点处的切线方程;( 2 )函数是否为“Storm函数”?若是,给出证明;若不是,说明理由。