当a=2014时,求÷(a+)的值.
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=)
如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1). (1)请在网格图形中画出平面直角坐标系; (2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′; (3)写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;
解方程: (1) (2)
(本小题12分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0. (1)若b=5,则点A坐标是 ; (2)在(1)的条件下,若OQ=8,求线段BQ的长; (3)若点P在函数y=x2(x>0)的图象上,△BQP是等腰三角形且PQ= 求出点B的坐标.
(本小题13分)如图,抛物线y= -x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?