某校夏令营有3名男同学和3名女同学,其年级情况如下表:
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
(本题14分)一个圆锥的底面半径为,高为,其中有一个高为的内接圆柱:(1)求圆锥的侧面积;(2)当为何值时,圆柱侧面积最大?并求出最大值.
(本题14分)袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.
(本题12分)如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:
(1)分别求出的值,并补全频率分布直方图; (2)估计这次环保知识竞赛平均分; (3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?
(本题12分)求经过直线的交点且平行于直线的直线方程
设数列的前项和为,已知.(1)求的值;(2)求证:数列是等比数列;(3)设,数列的前项和为,求满足的最小自然数的值.