一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.
在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(Ⅰ)恰有两道题答对的概率;
(Ⅱ)至少答对一道题的概率.
设 △ A B C 的内角 A , B , C 的对边分别为 a , b , c .已知 b 2 + c 2 = a 2 + 3 bc ,求:
(Ⅰ) A 的大小;
(Ⅱ) 2 sin B cos C - sin ( B - C ) 的值.
已知函数 f ( x ) = ln 2 ( 1 + x ) - x 2 1 + x .
( I ) 求函数 f ( x ) 的单调区间;
( II ) 若不等式 1 + 1 n a + a ≤ e 对任意的 n ∈ N * 都成立(其中 e 是自然对数的底数).求 α 的最大值.
若 A 、 B 是抛物线 y 2 = 4 x 上的不同两点, 弦 AB (不平行于 y 轴)的垂直平分线与 x 轴相交于点 P , 则称弦 AB 是点 P 的一条 "相关弦".已知当 x > 2 时,点 P ( x , 0 )
存在无穷多条 "相关弦" .给定 x 0 > 2 .
(I) 证明:点 P x 0 , 0 的所有"相关弦"的中点的横坐标相同;
(II) 试问:点 P x 0 , 0 的"相关弦"的弦长中是否存在最大值?若存在, 求其最大值(用 x 0 表示):若不存在, 请说明理由.
在一个特定时段内, 以点 E 为中心的7海里以内海域被设为警戒水域.点 E 正北55海里处有一个 雷达观测站 A .某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 ∘ 且与点 A 相距 40 2 海里的位置 B ,经过40分钟又测得该船已行驶到点 A 北偏东 45 ∘ + θ (其中 sin θ = 26 26 , 0 ∘ < θ < 90 ∘ )且与点 A 相距 10 13 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.