设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.
设椭圆C: (a>b>0)的离心率为,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为.(1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.
(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.
己知等比数列所有项均为正数,首,且成等差数列.(I)求数列的通项公式;(II)数列的前n项和为,若,求实数的值.
已知数列是等差数列,().(Ⅰ)判断数列是否是等差数列,并说明理由;(Ⅱ)如果,(为常数),试写出数列的通项公式;(Ⅲ)在(Ⅱ)的条件下,若数列得前项和为,问是否存在这样的实数,使当且仅当时取得最大值.若存在,求出的取值范围;若不存在,说明理由.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长.与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交于点.(Ⅰ)求、的方程;(Ⅱ)求证:;(Ⅲ)记的面积分别为,若,求的取值范围.