已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点(1)求证:AN∥平面 MBD; (2)求异面直线AN与PD所成角的余弦值;(3)求二面角M-BD-C的余弦值.
甲、乙两同学进行投篮比赛,每一局每人各投两次球,规定进球数多者该局获胜,进球数相同则为平局.已知甲每次投进的概率为,乙每次投进的概率为,甲、乙之间的投篮相互独立.(1) 求一局比赛甲进两球获胜的概率;(2) 求一局比赛的结果不是平局的概率.
在中,角A, B, C所对的边分别为a, b,c,向量»且满足. (1) 求角C的大小; (2) 若a-b=" 2," C =,求的面积.
已知函数(1)求函数在点处的切线方程.(2)求函数的单调区间.
已知的内角所对的边分别为,且.(1)若,求的值;(2)若的面积,求的值.
证明: 四点共圆.
如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长的m,AC的长为n,AD,AB的长是关于x的方程的两个根.