已知x2+y2=9的内接△ABC中,点A的坐标是(-3,0),重心G的坐标是(,求(1)直线BC的方程;(2)弦BC的长度.
设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点. (1)求椭圆的方程; (2)求证:三点共线.
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且. (1)求抛物线的方程; (2)过点作直线交抛物线于,两点,求证:.
如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1 (1)证明:AB=AC; (2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
已知等差数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求数列的前项和.
椭圆的离心率是,它被直线截得的弦长是,求椭圆的方程.